Maximum sum of two non overlapping subarrays¶
Time O(N); Space: O(1); medium
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M. (For clarification, the L-length subarray could occur before or after the M-length subarray.)
Formally, return the largest V for which V = (A[i] + A[i+1] + … + A[i+L-1]) + (A[j] + A[j+1] + … + A[j+M-1]) and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length, or
0 <= j < j + M - 1 < i < i + L - 1 < A.length.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation:
One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation:
One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31
Explanation:
One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Notes:
L >= 1
M >= 1
L + M <= len(A) <= 1000
0 <= A[i] <= 1000
[1]:
class Solution1(object):
def maxSumTwoNoOverlap(self, A, L, M):
"""
:type A: List[int]
:type L: int
:type M: int
:rtype: int
"""
for i in range(1, len(A)):
A[i] += A[i-1]
result, L_max, M_max = A[L+M-1], A[L-1], A[M-1]
for i in range(L+M, len(A)):
L_max = max(L_max, A[i-M] - A[i-L-M])
M_max = max(M_max, A[i-L] - A[i-L-M])
result = max(result,
L_max + A[i] - A[i-M],
M_max + A[i] - A[i-L])
return result
[3]:
s = Solution1()
A = [0, 6, 5, 2, 2, 5, 1, 9, 4]
L = 1
M = 2
assert s.maxSumTwoNoOverlap(A, L, M) == 20
A = [3, 8, 1, 3, 2, 1, 8, 9, 0]
L = 3
M = 2
assert s.maxSumTwoNoOverlap(A, L, M) == 29
A = [2, 1, 5, 6, 0, 9, 5, 0, 3, 8]
L = 4
M = 3
assert s.maxSumTwoNoOverlap(A, L, M) == 31